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Abstract

We consider a linear stochastic univariate rational expectations
model, with a predetermined variable, and provide alternative repre-
sentations of SSEs (stationary sunspot equilibria). For a strict subset
of the parameter space there exist SSEs that are locally stable under
least squares learning provided agents use a common factor represen-
tation for their estimated law of motion. These results indicate that
for some parameter regions SSEs are more likely to arise under private
agent learning than previously recognized.

1 Introduction

The possibility of expectations driven fluctuations in economic activity, em-
phasized by (Keynes 1936), received new support with the work of (Shell
1977), (Azariadis 1981), (Cass and Shell 1983) and (Guesnerie 1986), in which
it was shown that some market clearing models could have “self-fulfilling”
solutions, under rational expectations, driven by extraneous stochastic pro-
cesses known as “sunspots.” Although sunspot equilibria were first shown to
exist in simple stylized models, such as the Overlapping Generations model
of money!, the line of research initiated by (Benhabib and Farmer 1994),

*Financial support from the National Science Foundation is gratefully acknowledged.
!See the extensive survey in (Guesnerie and Woodford 1992).



(Farmer and Guo 1994) and (Farmer 1999) has shown the possibility of
sunspot equilibria in versions of Real Business Cycle models with monop-
olistic competition or externalities.

A question that has accompanied the growth of this literature concerns
the attainability of such equilibria. That sunspot solutions could be sta-
ble under adaptive learning was demonstrated for the basic Overlapping
Generations model by (Woodford 1990), and conditions for local stability
under adaptive learning were provided in (Evans and Honkapohja 1994b)
and (Evans and Honkapohja 2002a) for one-step forward looking univariate
nonlinear models. The solutions considered in these papers take the form
of a dependence on extraneous finite state Markov processes. This type of
solution is prominent in the theoretical literature, e.g. see (Chiappori and
Guesnerie 1989), but plays a relatively minor role in applied macroeconomic
research.

A different class of sunspot solutions, taking an autoregressive-moving av-
erage (ARMA) form, has also been discussed in the literature, e.g. (McCallum
1983), (Farmer 1999), and Part III of (Evans and Honkapohja 2001). In these
formulations the extraneous sunspot variable is an exogenous white noise
process. (Evans and Honkapohja 1994a) and (Evans and Honkapohja 2001)
discuss the stability under learning, for linear models with predetermined
variables, of sunspot solutions taking this ARMA form, which is the type of
solution more commonly considered in the business cycle literature.

The current paper reexamines these issues in the context of a linear ex-
pectations model with a predetermined variable. Our major contribution is
to show that a subset of ARMA-type stationary sunspot equilibria, which
would previously have been viewed as unstable under learning, are stable
when agents condition their forecasts on an appropriate exogenous variable.
This finding substantially increases the set of stationary sunspot equilibria
that are plausible solutions, in the sense of being locally learnable, and it
includes types of solutions often emphasized in applied work.

We emphasize throughout that rational expectations equilibria have al-
ternative representations, and we show how stability under learning depends
in part on the representation estimated by agents and used by them to make
forecasts. Although the “general form” ARMA representations that depend
on serially uncorrelated sunspot variables, are not stable under learning, we
find that alternative “common factor” representations of these solutions are
in some cases stable. One way to view our results is that they show how
stability under learning of sunspot equilibria can depend on the time-series



structure of the observed sunspot variable. For part of the parameter space,
exogenous autoregressive variables with an appropriate autocorrelation coef-
ficient (a “resonant frequency”) can induce sunspot equilibria that are stable
under learning.

We illustrate these results using Sargent’s extension of the Lucas-Prescott
model of investment under uncertainty to incorporate tax distortions and ex-
ternalities. Stationary sunspot equilibria exist for some cases in which tax-
rates and/or externalities are large. In part of the “indeterminacy region,”
although sunspot equilibria exist, they are never stable under learning. How-
ever, in other regions of the parameter space these stationary sunspot equi-
libria are stable under least squares learning provided agents condition on a
sunspot variable with the required time-series properties.

2 The Framework

We consider the following univariate model:
Y = o+ BE Y1 + 6y 1 + vy,

where v; is a white noise exogenous process and E}1y;,1 denotes the expec-
tations formed by agents at the start of period ¢. Under the rational expec-
tations assumption Efy;11 = Fiy;1, the mathematical expectation of y;,q
conditional on information available at ¢.

Clearly we want to impose that 8 # 0 and ¢ # 0 and we will also assume
that G+ 6 # 1. There is then a unique nonstochastic steady state given by
7= (1— 08— 6)"'a. Hereafter we let y;, y;_1, Efyis1, etc., denote deviations
from g, and we can therefore rewrite the model as

Y = BE Y1 + 6yr—1 + vp. (1)

Our focus will be on stochastic versions of the model in which v, is nontrivial,
but we will also at times need to refer to the nonstochastic model

Yt = BE Y1 + 0Yi1, (2)

which appears frequently in the literature. Note that, even though there
are no “intrinsic” shocks in (2), the nonstochastic model can have stochastic
solutions under rational expectations.? In the stochastic case solutions will

2The set of solutions to the model without predetermined variables was discussed in
detail by (Gourieroux, Laffont, and Monfort 1982).
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depend on v; and may also depend on other extraneous stochastic processes,
usually called “sunspots.” In this paper we begin by characterizing the so-
lutions to (1), i.e. the rational expectations solutions to the model. We
then relax the assumption that expectations are given by true conditional
expectations and consider the system under learning.

A rational expectations equilibrium (REE) is a stochastic process y; which
satisfies (1) or (2) under the assumption that Efy;;1 = Eyyy1. The model
(1) can be regarded as holding for all integers ¢, in which case REE solutions
y; are doubly infinite stochastic processes. Alternatively the model can be
assumed to hold for all integers ¢ > t,, where without loss of generality we
set to = 0. In the latter case REE are solutions that begin at time ¢ = 0
with some initial distribution gy, which for convenience we take to be a
nonstochastic initial condition ¢y. In this case we say that the REE v, is an
initialized stochastic process. We will focus on the doubly infinite case, but
occasionally will need to explicitly discuss initialized models.

We restrict attention to solutions that are nonexplosive in the sense that,
for each ¢, E;|y1s| is uniformly bounded over s. The applied literature
frequently focuses on solutions that are covariance stationary, in the case
of doubly infinite processes, or asymptotically covariance stationary, in the
case of initialized processes. It can be shown that if a process is covari-
ance stationary, or asymptotically covariance stationary, then it is uniformly
bounded in expectation, and that the latter condition in turn implies that it
is conditionally uniformly bounded in expectation. A statement and proof
of these results is provided in the Appendix.

The nonstochastic model always has the stationary solution y; = 0, but
whether or not (1) has a nonexplosive stationary solution depends on the
roots of the associated quadratic 3a® — a + 6,

1— /1 —43 1+ /I -45%
T and Ao = T

Throughout the paper, for convenience, we will assume that the two roots are
distinct and that neither lies on the unit circle. If both roots are greater than
one in norm® then, as we show below, there are no nonexplosive solutions to
the model. If the quadratic 3a® — a + & has exactly one real root a; with

a) =

3i.e., have absolute value greater than one if real or complex modulus greater than one
if not real.



norm less than one then there is a stationary solution given by
Zzi=01—-aL) (1 - Ba;)™" (1 — Ba;)~ Za Vg j. (3)

Here L is the lag operator defined by Ly; = y;—1 and (3) explicitly gives the
(absolutely summable) moving average representation of the solution zi. It
is easily verified that z! solves (1) and in the next section we show that it is
the unique nonexplosive solution in this case. This solution, of course, has an
AR(1), i.e. first order autoregressive, representation, which can be written
as

2 = azzt L+ (1= ﬁaz) v, or equivalently (4)
% = aiziy + (Bay) vy, for j # 4,

where the second line uses F(a; + ag) = 1.
If both roots of the associated quadratic are less than one in norm then
there is a stationary solution given by

5 =01—-B8'L+B 6L (1 - B "L,

as can again be directly verified. Note that this can also be written as the
ARMA(2,1) process z; = 67 1 — 3765 o+ v — B v 1. If the roots are
real there also exist two solutions of the form (3), or equivalently (4), in which
a, is chosen to be either of the two roots. These solutions are often referred to
as the MSV (minimal state variable) solutions, following (McCallum 1983).*
However, if both roots are less than one in norm there are other stationary
solutions as well, and the complete class of solutions can be described in
various ways. It will be useful to note that the set of solutions to (1) is
given by the sum of any particular solution plus the set of solutions to the
homogeneous equation (2). Thus, y; = 2} + ¢, is a solution of model (1) if
and only if the stochastic process (, satisfies

(t = ﬁEtCHl + 6§t—1'

*In fact (McCallum 1983) recommends choosing one of these two solutions based on
a subsidiary selection principle, whereas we will focus on local stability under learning of
alternative solutions.




(If the roots are nonreal then the set of solutions can be written y; = 2, +¢,).”
When (, is stationary and generated by an extraneous exogenous process, the
solution is called a stationary sunspot equilibrium (SSE).

In the next section we provide a characterization of the full set of solu-
tions, when multiple equilibria exist, in terms of martingale difference se-
quences. Although these and related results on regularity and determinacy
are not new, they provide the starting point for our analysis of the stability
of solutions under learning.

3 Indeterminacy and Existence of SSEs

Throughout this Section we maintain the rational expectations assumption.
An issue usually discussed in the context of the nonstochastic model (2) is
whether a solution is “locally unique” or “determinate.” For this concept
we consider initialized processes. Suppose that an initial condition yy =
Yo is given and that (2) holds for ¢t = 1,2,3,.... Consider first perfect
foresight solutions, which satisfy v, = 3 'y — 5 "6y, for t =1,2,3, . ...
If the roots ai,as of the quadratic are real then solutions can be written
v, = Kial + Ksdl for parameters Ki, K». The initial condition imposes
the constraint Ky + Ky = 9. If |ay|, |az| > 1 then there is no nonexplosive
solution unless gp = 0. If |a;| < 1 < |ag| then imposing nonexplosiveness
leads to the additional condition Ky = 0, and it follows that there is a
unique nonexplosive solution. The model or solution in this case is said to
be “determinate.”

Finally, if |a1|,|az] < 1 then for every K the sequence given for ¢ =
1,2,3,... by y+ = Kia} + (9o — K1)ab is a perfect foresight solution. In
particular, if y; is the solution specified by K; and y; is the solution specified
by K} then lim; . |y: — y;| = 0 and sup,~, |y: — ;| can be made arbitrarily
small by choosing K/ sufficiently close to K;. We say that the model is
“indeterminate” in the sense that for any perfect foresight solution there is
another perfect foresight solution arbitrarily close to it. Analogous arguments
can be made for the case of nonreal roots b & ci since in this case perfect
foresight solutions can be written y; = Kr! cos(wt+ ¢) where r = (b% + 02)1/ ?
and rcosw = b: if r > 1 there are no nonexplosive solution unless gy = 0

For (, satisfying this equation and given any particular solution z;, substitution of
Yyt = 2z¢ + ¢, into (1) verifies that y; is also a solution. Similarly if y; is a solution then
letting ¢, = y; — 2z; and substituting into (1) it follows that ¢, = BE;(;; + 6(,_1.



while if » < 1 there are multiple nonexplosive solutions and the model is
indeterminate.’

The closely related concepts of “regular” and “irregular” models are usu-
ally stated in terms of the matrix representation of the solutions. Writing
the perfect foresight solutions as

Yit1 Bt =pls Yt
[ Ye } B [ 1 0 Yi—1 o
Tip1 = Awy,

it is easily seen that the eigenvalues of A are equal to the roots of the as-
sociated quadratic. If the number of roots of A with norm less than one is
equal to (more than, less than) the number of predetermined variables then
the model is said to be regular (irregular, explosive). Since we here have one
predetermined variable, it is immediate that regular models have determinate
solutions while irregular models are indeterminate.

We now turn to the stochastic model (1) and restate and extend these
results. Letting €41 = yr1 — Eiyiaq, rational expectations implies that
Eie 1 = 0. A stochastic process ¢; that satisfies this property is known as
a martingale difference sequence. It follows that a stochastic process y; that
solves (1) must satisfy

Yer1 = By — B 6y — By + €41 (5)

for some martingale difference sequence €;,;. Conversely, for any arbitrary
martingale difference sequence ¢;,; this equation specifies a solution.” It is
convenient to rewrite the equation in matrix form as:

-1 -1 -1
Yi+1 g =66 Yt —0 1

= + vy + Et41- 6

[yt} ll 0 Hyt—l] lo Hlofe @

As in the nonstochastic case we can distinguish between regular, irregular

and explosive cases based on the number of roots of A inside the unit circle.

Our definition of determinacy extends in a natural way to the stochastic
case. Let {y:},, be a solution to (1) subject to the initial condition yo = ¥o.

6(Blanchard and Kahn 1980) showed, for a general class of linear models, that there is
a unique nonexplosive solution in the “regular” case (see below).

"The approach of writing solutions to linear rational expectations models in terms
of arbitrary martingale difference sequences was emphasized by (Broze, Gourieroux, and
Szafarz 1990).



The solution is said to be indeterminate if there exists a distinct solution

{y;},2,, meeting the initial condition, such that lim, .. |y: —y;| = 0 and

sup;~ |4+ — y;| can be made arbitrarily small, where equality here is taken to

hold almost everywhere. Otherwise the solution is said to be determinate.
We have the following result:

Proposition 1 Let ay,ay be the roots of the associated quadratic. (i) If
lai|,|az| > 1 then almost surely there exist no nonexplosive solutions to (1).
(11) In the reqular case |ai| < 1 < |ag| there is a unique nonexplosive solution
to (1). This solution has the representation

Yy = @Y1 + (ﬁag)_lvt,

which is stationary, in the doubly infinite case, and asymptotically stationary
for the initialized model. It follows that there do not exist SSEs. (iii) In the
irreqular case |ay|,|az| < 1 SSEs exist. y; is a solution if and only if it can
be written in the form (5) for some martingale difference sequence €;y1, and
i this case every solution is indeterminate.

The region of the parameter space in which SSEs exist is given by the
following:

Corollary 2 The model is irreqular if and only if the parameters of the model
are contained in one of the following two regions:

1.B>4%, 6>1-08, 6<8

2. f<—3,

o< —-1—-06, 6>0

These results are proved in the Appendix.
It is also straightforward to compute that the regular case corresponds to
the region |3 + 6| < 1.

4 Representations and T-maps

Before considering the stability of REE under learning we must first distin-
guish between REEs and their representations. We begin by defining the
notion of representations and then show how maps from the perceived to the
actual law of motion, which we will call T-maps, can be used to characterize
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them. As will be shown later, alternative representations of an REE corre-
spond to alternative econometric specifications that might naturally be used
by an economic agent faced with the problem of how to forecast key variables
required for decision making.

4.1 Representations

Recall the model (1) under the RE assumption:

Y = BEwWep1 + 0y 1 + vy,

reproduced here for convenience. Recall that an REE is a stochastic process
y; that satisfies this equation. A rational expectation equilibrium represen-
tation (REER) of a given REE is a linear recursion, a solution to which
is the REE. We say the REE is represented by the REER. Notice that a
given REE may have more than one representation: for example if a doubly
infinite REE is represented by an AR(1) process then it is also represented
by an ARMA(2,1); simply operate on each side of the AR(1) representation
by 1 — nL for any n € R. Also, a given REER may have many solutions
and hence yield many REE’s: for example, if an initialized model does not
specify a full complement of initial conditions for the REER then the REER
may have infinitely many solutions corresponding to the additional degrees
of freedom in its initial conditions.

In the previous section we showed that, when the nonexplosiveness con-
dition is imposed, in the regular case there is a unique REE. In this case
the REE does not depend on sunspots and it has an AR(1) representation
driven by the intrinsic shock. In contrast, in the irregular case there are
multiple REE, including REE that depend on sunspots. We now consider in
more detail representations of the REE in the irregular case. In the previous
section we demonstrated the first result on representations of REEs, namely:

Proposition 3 In the irreqular case, the process yi is an REE of (1) if and
only if there is a martingale difference sequence €; so that y; solves

Y =B Y1 — B Y2 — B 01 + & (7)

Representations of this form we call general form representations.
If we consider only the case with real roots and doubly infinite processes,
we also have the following:



Proposition 4 Consider the irreqular case and assume that the roots of the
associated quadratic are real. The process y; is an REE of (1) if and only if
there is a martingale difference sequence €; so that y; solves

Ye = aiyp—1 + & + (ﬁaj)ilvt (8)

where a;, i = 1,2 are the roots of the quadratic fa*> —a+6 =0, i # j, and
&, satisfies

§ = a1 — (5%’)717}1& + & 9)

Proof. By Proposition 3 y; is an REE if and only if there exists a
martingale difference sequence. €; so that y; solves (7). Define the process &,
by (9). Then g, is an REE if and only if

(1 — ﬁ_lL + ﬁ_l(SLQ)yt =&t — ﬁ_l’Ut_1
& (1-aL)(1—ael)y, =& —a;&_ — 5_1%71 + (5%’)71%
& (1—aL)(1 —axLl)y; = (1 —a; L), + (Ba;) (1 — a;L)v;.

Canceling the appropriate lag polynomial yields the result. m

We will refer to representations of this form as common factor represen-
tations (CF representations) since they are obtained from lag polynomials
with a common factor.® These propositions tell us that each doubly infinite
REE can be represented in general form and (in two ways) as a common
factor. Several additional remarks are in order.

Remark 1: We can equivalently state that y; is an REE if and only
if there is a martingale difference sequence &; so that y; solves (8) and &,
satisfies

& = ajft—l + &

This is immediate since e; = & + (8a;) 'v; defines a martingale difference
sequence.

Remark 2: Each of the two MSV solutions y; = a;y; 1 + (Ba;) ‘v, also
has two CF representations. One representation is y; = a;ys—1+E&,+ (ﬁaj)_lvt

8The importance of common factor solutions was stressed in (Evans and Honkapohja
1986). For other applications see (Evans and Honkapohja 1994a) and (Evans and
Honkapohja 2002b).
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with ¢, = 0, and the other representation is given by v, = a;y—1 + & +
(Ba;) v with &, = a;&, 1 +{(Ba;) " — (Bai) '} vr.

Remark 3: In the initialized case the analog of the CF representation
of an REE y; is

Yer1 = Ay + &g + (Bay) ™ v + Ka?rl’

for t =0,1,2,..., and K is arbitrary. Since |a;| < 1 as t — oo the solution
Yy converges to a process that satisfies (8).

4.2 T-maps

A useful way to analyze representations of REE’s is to view them as fixed
points of a map. Specifically, assume agents know the functional form of
the representation, but do not know the corresponding parameter values; we
assume they have some perception of what the parameter values are and we
call the subsequent functional form with these values imposed the perceived
law of motion (PLM). Agents use the PLM to form their expectations of
future values of y;. The actual law of motion (ALM) is obtained by inserting
these expectations into the reduced form model. Provided the PLM is well-
specified, the ALM will have the same functional form and the associated
parameter values, which we think of as the actual parameter values, will
depend on the agents’ perceptions. If 6 represents the agents’ perceived
parameter values, let T'(0) represent the actual parameter values. Then a
fixed point of this 7" — map determines an REER.

To analyze the REER’s of our model, consider the case of real roots and
let £, be an observable stationary exogenous process defined by

§ = N 1 + &,

where Eierq = 0 and |A| < 1. We assume that A is known. Particular values
of A will be of interest, but we do not at this stage impose any additional
restrictions on A. In line with the preceding results we consider PLMs of the
form

Yt = aYi—1 + byr—o + c + d&, + kv + lve_q. (10)
In terms of the general notation above we are thus setting

0= (a,b,c,d k).
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Note that this specification for the PLM includes the general form solutions
(provided A = 0) and the common factor solutions (provided A = a;).
For this PLM expectations are formed according to

Efyiv1 = c+aEfy +byi—1 + dXE + Loy
= c+alc+ay 1 +by o+ d&, + kv + lvg_1) + by 1 + dXE, + Ly,

so that

Efyi = c(1+a) + (a® + b)ys_1 + aby,_o + d(a + M€, + (I + ak)v; + alv,_;.

(11)
Note that here we make the assumption, frequently made in the literature,
that y; is not part of the time ¢ information set, but that exogenous variables
&, and v, and lagged variables are known when forecasts are made at t.

(Section 7 discusses the impact of including y; in the information set).
Substituting (11) into (1) yields the ALM

ye = (B(a® +b)+8) yr1 + Baby, o + B(1 + a)e + fd(a + M),
+(1 + ﬁl + ﬁak)vt + ﬁalvt,l,

and thus the T-map is given by

a — B(a®+b)+6, (12)
b — Bab (13)
¢ — Bl+a), (14)
d — pBla+MN)d, (15)
k- — (140l + Bak) (16)
I — Bal. (17)

The functional form of the PLM is sufficiently general that the fixed
points of this T-map will capture both the general form representations and
the common factor representations. To analyze these fixed points it is helpful
to begin by considering the subsystem of 7'(6) = 6 corresponding to (12) and
(13). Provided that the quadratic a = 3a* + é has distinct real roots a; and
as, there are three possible solutions for (a,b), given by (ay,0), (az,0) and
(61, —519).

There are thus two cases: (I) If (a,b) = (37", —37'6) then it is easily seen
that fixed points § must satisfy ¢ = 0,/ = —3~" and that k is arbitrary. If

12



A = 0 then d is arbitrary and if A # 0 then d = 0. (II) If (a,b) = (a;,0), for
i=1,2, then ¢=10=0and k = (8a;) !, where a; # a;. If A = a; then d is
arbitrary and if A # a; then d = 0.

Now let

S = {(6",)) € R"|T(0") = 6"}

We see that S = SG U SM’,l U SM,Q U SCF,l U SCEQ, where

SG - {(67)\)eS|a’:ﬁ717b:_ﬁ71670207l:_ﬁ717)\:0}7
Sui = {(0,)) € Sla=a;,b=c=0,d =0,k = (Ba;)”",l =0, # a;}
Sori = {(0,\) € Sla=a,b=c=0k=(8a;)"",l =0,\ = a;}.

We have the following proposition.

Proposition 5 Let X; = [y1—1, Yt—2, 1,&;, v, 11|, and assume that the roots
ai,as are real.

1. If 0 € Sq then for any martingale difference sequence &, y; = 0'X; is
a general form representation.

2. If 0 € Sy or 0 € Scr, then y, = 0’ X, is a common factor representa-
tion.

3. If y; is an REE then

(a) there exists O € S and martingale difference sequence €; so that
Y = 9,Xt.

(b) fori=1,2 there exists 0 € Syr; U Scr; and martingale difference
sequence €; so that y; = 0'X;.

Given the results from Propositions 3 and 4, the only potential subtlety in
proving this Proposition is the observation that if a common factor solution
conditions on the process &, then there is a solution conditioning on d§, for
any d. To see this, notice that if £, satisfies (9), then &, = d€, satisfies

& = ;&1 — (Bay) " v, + €,
where ¢} = de; — (Ba;) (1 + d)vr.

13



5 E-stability

Let 6" be a fixed point of the T-map. We say 6" (and the associated REER)
is F-stable provided the differential equation

do
= T#)—06 (18)
is locally asymptotically stable at 6. The E-stability Principle says that if
the REER is E-stable then it is learnable by a reasonable adaptive algorithm.
This principle is known to be valid for least squares and closely related sta-
tistical learning rules in a wide variety of models. For a thorough discussion
see (Evans and Honkapohja 2001).°

The definition of expectational stability just given is inadequate when
there is a non-trivial connected set of rest points of the differential equation
(18), as is the case for our model; if the A-section of S is locally connected
then no point in S is locally asymptotically stable. In this case the notion
of E-stability is extended as follows: we say that a set of fixed points, @), is
E-stable provided there is a neighborhood U of @) so that for any 6, € U
the trajectory of 6 determined by the differential system (18) converges to a
point in ). A necessary condition for E-stability of ) is that for all points
g € @ the non-zero eigenvalues of the derivative T'(f) — 6 evaluated at g
have negative real part. In our case this necessary condition is also sufficient
because the derivative of the T-map has only one zero eigenvalue; see “Proof
of Proposition 7”7 in the Appendix for details. Abusing notation slightly, we
will say that for fixed A, the set S, is E-stable provided it is E-stable as a
subset of RY.1Y Finally, we shall say a representation is E-stable provided the
associated set S, is E-stable.

Notice that since a given REE can have different representations, we
should not strictly speak of learnable REEs, but instead of whether an REER
is learnable. For example we will find that, for some regions of the parameter
space, common factor representations of an REE are stable under learning
even when the general form representation is not. It will be terminologically

9The connection between least squares learning and E-stability is established using
convergence results from the stochastic approximation literature. This technique was first
applied in the macroeconomics learning literature by (Marcet and Sargent 1989).

108ince A is exogenous and assumed known, stability in its dimension is not relevant.
If A\ were not known it could be consistently estimated by a regression of £, on &,_; and
E-stability conditions would be unaffected.
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convenient for us to describe this by saying that the common factor solution
is stable while the general form solution is not. As we will see, there are also
cases in which all representations of an REE are unstable.

5.1 Instability of General Form Solution

We begin with a result that the general form solutions, i.e. REE written in
their general form representation, are not E-stable.

Let ¢ = (61, 03). Since the subsystem of the differential system (18) corre-
sponding to ¢, is decoupled from the rest of the differential system, it follows
that a necessary condition for E-stability of the general form solution is that
the subsystem

a9 _

L =Ty0) -9 (19)

be locally asymptotically stable at ¢* = (37", —§3~"), where Ty is the obvi-
ous map. The derivative matrix is given by

20a — 1 I}
08b Ba—1 1"

Recall that a fixed point is locally asymptotically stable provided the eigen-
values of the derivative have negative real part, or, equivalently, the derivative
has negative trace and positive determinant. Evaluated at the fixed point ¢]

D(Ty) — I, = {

we have D(Ty) — I = [ _1 5 g } , which has positive trace thus yielding the

following result:

Proposition 6 The general form solution is not E-stable.

5.2 Stability of Common Factor Solutions

We now consider E-stability of CF solutions, i.e. REE written in their Com-
mon Factor representation and given by Syr1 U Syra U Sor1 U Sora. We
again start by considering the subsystem (19). Evaluated at ¢, = (a;,0) we

obtain D(T,) — I, = 26 a(,»)— L ﬁwﬁ ERE which yields the stability con-

dition 20a; < 1. From the expressions for a; and as, it is immediate that
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this stability condition is satisfied for a; and fails for a;. Thus any REER in
Swm2 U Scre is not E-stable.

For the MSV solution S)s; and the CF stationary sunspot equilibria Scr 2
the remaining E-stability conditions are obtained in the Appendix. We have
the following result:

Proposition 7 The Common Factor solutions Sy 2UScr2 are not E-stable.
The conditions for E-stability of the Common Factor Solutions Sy and
Scra are as follows:

1. The MSV solution Sy is E-stable when (i) f < % or B+ 6 <1 and
(it) Bla; + A) < 1,

2. The CF solution set Scr, is E-stable when 3 < % or B+06 < 1.

Figure 1 illustrates the region in (3, §) space in which the Common Fac-
tor solution SSEs are E-stable. The region is obtained by simultaneously
imposing the conditions for indeterminacy, that the roots be real and that
conditions for E-stability of the CF solutions be satisfied. The resulting
region is specified by [ < —%,ﬁ +6 < —1and 4066 < 1.

FIGURE 1 ABOUT HERE

We also make several remarks concerning the E-stability condition (ii)
for the MSV solution Sjr;. Recall that the CF solution set Scr1 requires
A = ay. Since [(a; + az) = 1, condition (ii) is not (quite) satisfied when the
CF solution set is E-stable. However, note that the CF solution set Scr:
includes a continuum of values for d and that the CF solution for d = 0
describes an REE that is identical to the corresponding MSV solution.

The other point to note in connection with condition (ii) for the MSV
solution is that it would not be required if the PLM (10) excluded the variable
&;. In that case E-stability of Sy, is governed by (i) and it can be seen that
this condition is always satisfied throughout the regular region |5 + 6| < 1, as
well as in parts of the irregular and explosive regions. Condition (ii) provides
an additional requirement that guarantees stability of this MSV solution even
if agents condition also on &,. Further discussion is given in the appendix.
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5.3 Discussion

Our results show that stationary sunspot equilibria are E-stable in a subset
of the indeterminacy (or “irregular model”) region. This is true even though
the set of general form representations (7), which take an ARMA(2,1) form,
always fail to be E-stable in this model.!! The key to obtaining E-stability
in this subregion is that agents use a perceived law of motion in which they
condition forecasts, not only on the predetermined variable, but also on an
exogenous AR(1) process &, with autoregressive parameter A = ap. This
exogenous process can be thought of as having a “resonant frequency,” i.e.
having time-series properties that are exactly right for exciting a stationary
sunspot equilibrium. When the conditions 3 < —%, B+6<—1and 486 < 1
are satisfied, conditioning learning on &, leads to an E-stable set of SSEs.
These SSEs have the same time-series properties as the ARMA(2,1) solutions,
because they are an alternative representation of these solutions.

The term “resonant frequency” was used in (Evans and Honkapohja
2002b) to describe the (well-known) condition on transition probabilities re-
quired for existence of finite state Markov SSEs in forward-looking models.
Here we see that the phenomenon is in fact much more general and applies
also to models with predetermined variables. An exogenous AR(1) process
with an autocorrelation parameter equal to one of the two roots can form the
basis of a sunspot equilibrium for a PLM that conditions on this exogenous
variable as well as its own lag. These are the CF representations of SSEs.
Furthermore, in the subset of the irregular region shown in Figure 1, condi-
tioning on the resonant frequency sunspot variable &, = as§,_; + &; leads to
SSEs that are E-stable and are therefore (as we verify below) stable under
least-squares learning.

6 Simulations of Real-Time Learning

Our conjecture is that for values of 3 and ¢ in the indicated region of Figure
1, the corresponding CF solutions are stable under least squares learning. We
have shown that in this area the conditions for E-stability are satisfied for the
common factor representation of SSEs. The E-stability principle says that if

Tn some linear models the general form solutions can be E-stable. This was found
in (Evans and Honkapohja 1992), (Duffy 1994) and (Evans and Honkapohja 1994a) for
models that rely on different information sets and include forecasts over multiple horizons.
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an REER is E-stable then it is learnable by a reasonable learning algorithm.
However, the E-stability principle is only known to formally apply to REER
which are isolated rest points of the differential equation (18). To support
our focus on E-stability we now simulate least squares learning of the REER.

Before presenting the numerical results we briefly outline the framework
under which the simulations are generated. Under least squares learning
agents are assumed to have a PLM in which y; depends linearly on pre-
determined and exogenous variables X; with coefficients #. The values of
0 are unknown to the agents, who therefore use an estimate of its value.
More specifically, we assume that agents make forecasts based on the PLM
(10). At the beginning of period ¢ agents have available observations of
X = [y1,Y2,1,&, v, v 1] and use the estimate 0; 1 of 0 = [a, b, ¢, d, k, 1]
based on data through period ¢ — 1. Their forecasts are thus given by (11)
with 6 replaced by 6; ;. The value of y; is then determined according to (1)
by these expectations and by y; 1 and v;. The outcome can be conveniently
expressed as y; = T'(0; 1)’ X; where T'() is specified by (12)-(17).

We then move to the next period ¢ + 1, at the beginning of which agents
update their least squares estimate of # using the time ¢ data point. The
recursive least squares (RLS) learning algorithm!? for the updated coefficients
of the least squares regression of y; on X; is given by

1 ,

0 = 0,1+ gRt_lXt(yt —0,1'Xy), (20)
]' !

Rt - Rtfl -+ ;(XtXt - Rtfl). (21)

Note that y, — 0; 1’ X, is the period t residual for the estimated relationship
using the previous period’s estimate 0; 1. Using y; = T(0; 1)’ X; the 6,
recursion can be written as

1 ,
9,5 - Htfl + ;R;lXt((T(etfl) - 9,5,1) Xt) (22)

The sequence of events is then again repeated: exogenous variables v;,1 and
&:41 are then determined, agents form expectations and y;1; is determined.
The question of interest is whether 8; — 6 € S as t — oo. In particular if
0 — 0 € Sq¢UScrp1 U Scrs then the process y; converges asymptotically to
an SSE.

12See, for example pp. 32-3 of (Evans and Honkapohja 2001).

18



Note that we have chosen the functional form of the PLM (10) so that
the associated T-map has as fixed points all REER of interest. The gen-
erality of this form implies that for a given representation the PLM may
be over-parameterized so that the associated fixed point has zeros in some
entries. This over-parameterization poses no problem for E-stability; how-
ever, there may be important consequences for the corresponding real time
learning algorithm. Specifically, if the over-parametrization leads to severe
multicollinearity, the statistical learning algorithm may settle on a vector of
parameters not corresponding to a fixed point of the T-map. Interestingly,
even if this occurs, the associated sequence of endogenous variables still con-
verges to a REE. We begin by analyzing this phenomenon in more detail and
then consider the behavior of real time learning algorithms using regressors
which do not yield multicollinearity problems.

6.1 Over-Parameterization and Multicollinearity

This issue is most easily examined by considering representations without
sunspots. Specifically, we assume the following PLM:

Yt = aY—1 + byr—o + kvy + lvp_4. (23)

The associated T-map is given by (12), (13), (16), and (17). A fixed point
of this T-map is given by a = a3, b=0, k = (1 — ﬁal)fl, and [ = 0, yielding
a representation of the form

v = a1y + (1 — 5%)_1 Vt. (24)

Arguments already given show that for appropriate parameters, this repre-
sentation to be E-stable; however, real time learning algorithms can settle
on parameter values other than those yielding this representation. This is
illustrated in Figure 2, which gives the results of one simulation of the model
under least squares learning for this PLM with 8 = —3 and § = 1.13

FIGURE 2 ABOUT HERE

131n the simulations shown in Figures 2 and 3 6, R, evolve according to (22) and (21),
but with X; = [y;_1,yt_2,0:, 1] and 6 = [a,b, k,[]’ and the T-map restricted as indi-
cated. Similary in Figure 3 X; = [y;—1, y1—2,v¢] and 6 = [a, b, k]'.

19



To understand this behavior, first notice that if the process y; solves (24) and
1 € R then y; also solves

(1 —nL)(1 — a L)y, = (1 — Bar)~" (1 — nL)uv,. (25)

This ARMA(2,1) process is consistent with the agents’ PLM. If y; solves (24)
and agents believe in the ARMA(2,1) process then their regression residuals
are zero. (See Lemma 8 below.) Since RLS learning relies on these residuals
to update the estimator, it follows that in this case the estimator will be
stuck at a point which does not correspond to a REER. Note, however, that
the process y; is an REE.

Lemma 8 Let n € R, T be the T-map associated with the PLM (23), and
let

0 = [a+n,—am, (1—Ba)™",—n(1 - Bar)”'T,
Xi = [Yi-1, Y2, v, 01]"

If y; satisfies (24) then (T(0) — 0)' X; = 0.

Intuitively this Lemma must hold: if y; satisfies (24) then y; satisfies (25);
if agents know y; satisfies (25) then agents forecast y; correctly; if agents fore-
cast y; correctly then T' (9)'Xt = #'X;. The formal proof is straightforward
but tedious algebra and is omitted.

The central problem with the over-parameterization is that it leads to
severe multicollinearity. Notice that if y, solves (24) then the regressors in
the ARMA(2,1) representation display perfect linear correlation; y;_; is a
linear combination of y;_» and v;_;.!* To avoid this problem, it is natural to
drop one or more explanatory variables. For example, if the regressors are
taken to be y; 1,y o, and v;, then convergence of the RLS estimator to the
MSYV solution (24) does obtain, see Figure 3.

FIGURE 3 ABOUT HERE

Similarly, one could drop y; o and include v;_; or simply choose to drop
both extra regressors.

4Indeed if one extends the simulation shown in Figure 2 for a sufficiently long period, the
matrix R; eventually becomes close enough to singularity to result in numerical breakdown
of the algorithm.

20



6.2 Instability of General Form Solutions

Recall that general form solutions are given by

Y=0 "y 1—068 "y o— B v +e

where ¢; is any martingale difference sequence and is taken to be observed.
The form of the model requires v; to be a regressor in the agent’s PLM,
even though it is not present in the general form solution. (We are thus
forced to specify a PLM which can sometimes lead to severe multicollinearity
problems.) Specifically, we assume a PLM of the form (10) with A = 0 so
that &, = e

Ye = ayi_1 + bys_o + ¢ + dey + kvg + lvg_q.

Set Xi = [yt-1,Yt 2,1, e, 0,0 1], and 0 = [a,b,¢,d, k,l]. The behavior of
the algorithm (22) and (21) is analyzed via simulations. The algorithm was
initialized by choosing point at random within a given neighborhood of the
set Sq.

As predicted by the E-stability principle, convergence of the real time
estimators to the parameters associated with the general form solution does
not appear to obtain; all simulations were consistent with this REER being
unstable under least squares learning. Interestingly, in cases when the norms
of the estimates did not diverge to infinity, the estimators appeared to settle
on seemingly arbitrary values, with the exception of the estimator for k£ which
appears to converge to (1 — a;)™", and ¢ and d which appear to converge
to zero: see Figure 4. To explain this behavior, we must turn back to the
problem of over-parameterization. As mentioned above, to nest the various
representations we must over-parameterize the PLM. If convergence to the
general form solution obtains then the problem of severe multicollinearity will
not arise; however, the general form solution is not stable and the algorithm
quickly moves the estimates away from these values. As the estimates 6,
adjust, so too does the endogenous variable y;; if 3, adjusts so that it follows
the common factor representation

Y = a1y—1 + (1 — ﬁal)_lvt»

then, as was shown in the previous subsection, the estimators will settle on
an ARMA(2,1) process which is consistent with this AR(1) representation,
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that is, the agents will learn an over-specified model. In each case in which a
simulation resulted in convergence to some fixed values for the estimates, the
associated ARMA(2,1) process was an over-parameterization of the AR(1)

common factor solution produced above; for the simulations in Figure 4,
n ~ —.6623 works.

FIGURE 4 ABOUT HERE

We conclude that although the general form REER is not stable under RLS
learning, the agents may still learn an REE. Also, the learned REE will not
depend on the sunspot &;.

6.3 Stability of CF Solutions

Here we analyze numerically the real-time learning implications of Proposi-
tion 7. Recall that E-stable common factor representations have the form

Y = a1Yi—1 + dft + (]- - ﬁa&)_lvt:
gt = )‘gt—l + &,

where )\ is taken as known.!® We implement real-time learning by assuming
a PLM of the form

Yo = ayy1 +c+d&, + kv + lvy .

We have dropped the regressor y;_» to avoid problems with multicollinearity.
Setting 0 = [a, ¢, d, k, 1] and X; = [y;—1, 1,&,;, v¢, v;_1]" results in an updating
algorithm of the form (22) and (21). We consider the sets Sy;; and Scpy
separately.

6.3.1 MSV-Solutions

The E-stability Principle, together with Proposition 7, predicts that if § <
1/2, or 46 < 1, and if B(a; + A) < 1, then the RLS learning algorithm
described about should converge locally to the MSV solution. To test this
principle, we chose different parameter values satisfying these conditions and

15The assumption that A is known is made for simplicity. If A is unknown it can be
estimated by agents and the stability conditions are unchanged.
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simulated the learning model using standard normal white noise for the mar-
tingale difference sequence ;. Initial conditions were chosen randomly within
a small neighborhood of the MSV parameter values.

Analytic results implying convergence with probability one typically re-
quire amending the algorithm with a projection facility. Alternatively, one
can adjust the gain of the algorithm to obtain convergence with probability
approaching one. For the simulations produced here we scale the gain of the
RLS algorithm by 1/25, thus increasing the probability of convergence.

We found that with positive probability (that is, for a positive proportion
of our simulations), convergence to the MSV solution appeared to obtain.

FIGURE 5 ABOUT HERE

Figure 5 shows the results of a simulation corresponding to the parameter
values f = —3, A = .5, and § = 1 (so that 5(a; + \) = —2.8 approximately).
Graphs obtained using other values of 3, A, and § satisfying the E-stability
conditions were qualitatively similar.

6.3.2 Common Factor Solutions

We used simulations analogous to those mentioned above to analyze the
stability of common factor sunspots for the case A\ = ay. Initial conditions
were chosen at random near the set Scr1; the initial value of 83 was chosen
at random near one. Proposition 7 predicts that if 3 < 1/2 or §+6 < 1 then
convergence to some point in S¢r; will obtain.  Our simulations suggest that
with positive probability, this is indeed the case.

FIGURE 6 ABOUT HERE

Figure 6 shows the results of a simulation corresponding to the parameter
values 0 = —3, and 6 = 1. Notice, in particular, that 83 = d appears to
converge to some number not equal to zero, suggesting that agents in this
economy will indeed learn that there is a dependence on a sunspot variable.

7 Alternative Information Assumption

We have assumed that, when forming expectations E;y;,1 using the PLM
(10), agents have available observations of current exogenous variables v;
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and &, and the lagged endogenous variable y;_;. An alternative assumption
that could be made is that expectations E}1;,1 can condition also on current
y¢. In this case y; and Fjy;.1 are simultaneously determined. Although the
assumptions are equivalent under rational expectations they lead to differ-
ent out of equilibrium behavior and therefore can lead to different stability
conditions under learning. In this Section we summarize how the stability
conditions for learning SSEs are affected by including y; in the information
set.
Expectations are now given by

Efyi1 = aye + by1 + ¢+ dAE, + vy

Inserting into (1) and solving for y; gives the ALM

Bb+6 Be BdA 1+ 061
Y= 1" 3a ﬁayt_l + 1~ Ga + = ﬁaft + 1= Ga ﬁavtv

which implicitly defines the T-map. Note that the map is well defined only for
a# Bt When a = ! the temporary equilibrium does not exist, i.e. there
is no solution for g; consistent with this expectation formation rule. This
difficulty, which did not occur under are previous information assumption,
arises here because of the simultaneity of y; and Ey,,1.!% This in particular
applies to the general form solutions, in which @ = 87! and b = —3716, but
it can anyway be seen from the b component of the T-map T, = 0 that the
general form solutions cannot be E-stable.

We focus on the E-stability conditions for the CF solutions in the inde-
terminate case. The key stability conditions at the CF solutions a = a;, for
t=1,2, and b = 0 are that

__po <1land DT, = b
(1 — Bay)? 1 — Ba;
In the appendix we show that the E-stability conditions for the set Scr; are
unchanged: this solution set is E-stable if and only if § < % or f+6<1
and thus is E-stable as before in the shaded region marked in Figure 1.
However, a new case arises with the set Scr2. Under the earlier information

assumptions this set was never E-stable, but under the current assumptions

DT, = < 1.

16The possibility of nonexistence of temporary equilibrium is well known, see e.g.
(Grandmont and Laroque 1990)
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it is E-stable in the region bounded by 6 < 0 and 4+ 6 > 1. We continue
to find that neither CF solution set is E-stable for the part of the irregular
region in which 3,6 > 0.

These results confirm (and somewhat strengthen) our earlier results: for
a strict subset of the parameter space there exist SSEs that are locally stable
under learning provided agents use a PLM that nests the common factor
representation of these SSEs.

8 Investment under Uncertainty

We develop an example based on the (Lucas and Prescott 1971) model of
investment under uncertainty, extended in (Sargent 1987), Ch. XIV, to
allow for market distortions due to taxes and externalities. For this model the
stability under learning of the Minimal State Variable solutions was examined
in (Evans and Honkapohja 2001), Section 8.6.2.

Consider a competitive industry with NV identical firms. Output z; of the
representative firm at ¢ is given by

xy = xo + fokt + [LEK: + foKi a1,

where k; is the capital stock of the individual firm and K; = Nk; denotes the
aggregate capital stock. The presence of the two terms in K; reflect contem-
poraneous and lagged external effects. These may be positive or negative, so
we do not restrict the signs of f; or fo, but fy > 0 and xy > 0. Taxes are
levied on firms on capital in place. The rate itself is assumed to depend on
current and lagged aggregate capital stock, so that 7; = go + g1 K; + g2 K 1.
Total output is given by X; = Nx;, and demand for the market is

pt:D—AXt—i-ut,

where u; is white noise. We require p; > 0.
The firm chooses k; to maximize

> C
Ey Z Bt{pt($0 + foki + f1 K + fQKt—1> — wky — Tk — E(kt - kt71)2}7

t=0

where k_; is given and w, the rental on capital goods, is for convenience
assumed to be constant. C' > 0 reflects adjustment costs for changing k;.
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The Euler equation for this problem can be written
pth_ (w+7t) +BCE:]€,:+1 —C(1+B)kt+th_1 :0 (26)

for £ > 0. For an optimum solution for the firm we also require that k; >
0,z; > 0, and that the transversality condition is met.

In order to define the temporary equilibrium and study learning, we need
to be careful about the information structure. We assume that firms use
observations of lagged capital stock, the current intrinsic exogenous shocks
uy and the current extrinsic exogenous variable s; to make forecasts E} k.
Given these forecasts, firms choose their demands for capital k;, conditional
on p; and 74, to satisfy (26). The temporary equilibrium is then given by the
market clearing values of p;, 7; and k;. Using the identical agent assumption,
and combining equations, we obtain the reduced form

ki = a+ BE ki1 + 0ks 1 + yuy,

where 3 = BCQ™, § = —(foAfaN? + goN —C)Q7!, Q = foAN(fo+ fiN) +
@ N+C(1+ B) and v = Q7. With no externalities or taxes there is a unique
stationary REE. However, in general the parameters 3 and 6 are unrestricted.
In particular, for some parameter regions the associated quadratic has both
real roots inside the unit circle, and there are multiple stationary solutions,
including solutions depending on the extraneous sunspot variable s;.
Several further remarks on this set-up are in order. In line with the
treatment in the main body of this paper we are assuming that, although
exogenous variables at t are observable, data on aggregate capital K; are not
available at the time forecasts Ek; 1 are made.!” Second, firms are choos-
ing k; on the basis of their Euler equation (26), and to do so they require
forecasts of their own decision the following period, given available informa-
tion and their current decision rule. This is one natural way to formulate
the temporary equilibrium with learning and it has the advantage of keeping
close to the existing literature on adaptive learning. Third, the assumption
of identical agents considerably simplifies the problem, since aggregate and
firm capital do not then separately enter the reduced form. Adding, for ex-
ample, firm specific productivity shocks would lead to a reduced form with
separate dependencies on lagged aggregate and firm capital. It should be

17T expectations E¥ki11 can be made conditional on K; then the results of Section 7
would be applicable. Other information assumptions could also be envisaged and could
be studied using analogous techniques.
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clear, however, that the methodology of this paper could also be extended to
such frameworks.
Forecasts F;k;, 1 are assumed to be based on a PLM of the form

kt = akt_1 + bkt_g +c+ dft + kut + lut_l,

where under real time learning the coefficients are updated by recursive least
squares.'® Here &, is an exogenous stationary AR(1) &, = X\, ; + &. This
PLM nests all of the RE solutions, as we have shown, for appropriate choices
of \. We are now entirely in the framework that we have studied in this
paper.

This model is easy to study numerically. As noted above, when externality
or tax distortions are present the indeterminacy case is possible. It is easily
verified that various ranges of structural parameter values yield reduced form
parameters in the subregion in which the Common Factor representation of
SSEs is stable under learning. For example, normalizing with N = 1, the
parameter values A = 1, B = 0.95, C = 0.46, fo = 1. f; = —1, fo = 0.3,
g1 = —1.043, go = 0.306, leads approximately to 5 = —3 and 6 = 1.

The possibility that SSEs in this model can be stable under learning
has not previously been noticed. Our results suggest that research into the
empirical plausibility of these cases would be of considerable interest.

9 Conclusion

We have studied in detail the stability under learning of stationary sunspot
equilibria (SSEs) in the linear stochastic univariate expectations model with
a predetermined variable. In the irregular case in which SSEs exist there
are alternative representations of the solutions, and we have shown that the
representation is crucial for the stability of SSEs under learning. An SSE
can be represented (in “general form”) as an ARMA(2,1) process depending
on an exogenous martingale difference sequence. When agents use such rep-
resentations to estimate the law of motion to generate their forecasts, none
of the SSEs are stable under learning. However, SSEs have an alternative
“common factor” representation, and when agents use this perceived law of

18Because of our representative agent assumption, lagged aggregate capital K;_; and/or
K, 5 should not be additionally included. These variables do not incorporate any addi-
tional information and if included would lead to extreme multicollinearity in estimates of
the PLM parameters.
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motion, the SSEs are locally stable under learning in a strict subset of the
parameter space. We have illustrated and extended our theoretical results
using numerical simulations and provided an economic example based on in-
vestment under uncertainty in a competitive market with distortions. In the
Introduction we emphasized the importance in applied macroeconomics of
multivariate expectations models with predetermined variables. Given their
potential importance to business cycle theory, the extension of the findings of
this paper to multivariate models is a high priority for our current research.
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10 Appendix

10.1 Stationarity and Boundedness in Mean

We here carefully state and prove the results described in Section 2. We
begin with notation and definitions.

A stochastic process is a countable collection of random variables y; de-
fined on a given probability space (€2, F,u). If the process is defined for
t > ty we say that the process is initialized, otherwise we say the process
is doubly infinite. Given the process y;, define F; C F to be the smallest
o—field so that y, is measurable for all s < ¢t. Note that F; C F;1. We now
recall the definition of conditional expectation: Eiy;,, : 2 — R is the almost
everywhere unique J;—measurable function so that for all A € F; we have

/yt+sd,u:/Etyt+sd,u~
A A

We now make the following definitions: We say that the process y; is
Uniformly Bounded in Expectation (UB) provided

sup E|y| < oo.
t

We say the process is Conditionally Uniformly Bounded in Expectation (CUB)
provided that for all ¢

sup Ei|yiis| < oo a.e.
S

We have the following lemma.

Lemma 9 If the process is uniformly bounded in expectation then it is con-
ditionally uniformly bounded in expectation.

Proof. We prove the contra-positive. Assume the process is not CUB.
WLOG, y,, > 0. Then for some n we have that at least one of the following
two statements must hold: 3B € F,, of positive measure such that

L. limy o0 EnYngr(s) = 0O

2. lim,oo Epln—r(s) = 0
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on B for some subsequence as defined by the monotonic increasing function
7 : N — N. In the first case, we proceed as follows: that (1) holds implies
that for any positive real numbers M and 0, there exists JF,, —measurable

B C B and positive integer N so that p(B) > u(B) — 6 and Epypirs) > M
on B for all s > N. Now notice s > N implies

E(yn+T(S)) > /Byn+7(5)d,u = /;Enyer(S)d:u > M(M(B) - 6)

where the middle equality follows from the definition of the conditional ex-
pectations operator. Since 6 was arbitrarily small and M was arbitrarily
large, we have that the unconditional expectation is unbounded. To address
the second case simply notice the same argument holds. Of course, in this
case, for s <0, EpYnis = Ynis. W

The converse to the above result is false. As a simple example, let x be
any positive random variable with infinite expectation: for example, let z be
uniformly distributed on (0,1) and let z = 1/(1 — 2). Now let y; = z. Then
FEiyr s = x so that the process is CUB, but Ey; = oo so that the process is
not UB. Notice this argument applies to both initialized and doubly infinite
processes.

We may now extend the comparison to stationary and asymptotically sta-
tionary processes. Let {y;} be a stochastic process and 7, the j*"-autocovariance
of y;. If y; is doubly infinite then it is covariance stationary (CS) provided Ey;
and v, exist and are independent of time for all ¢ and j. If y; is an initialized
process then it is asymptotically covariance stationary (ACS) provided Ey,
and v, exist and the following hold:

1. limg o Fys < o0
2. lim, 005 <00 Vj €N

The second condition in particular requires that lim, . vy, < 0o. It is well
known that E |z’ < co implies E |2["~" < oo for any random variable z and
for all p > 1. Hence lim;_,o 7, < 0o implies lim; o F |ys| < oo. Thus CS
or ACS implies UB. To see that UB does not imply CS or ACS, consider the
following deterministic process

] 1 iftiseven
Y=91 0 iftisodd

This process is clearly UB and neither stationary nor asymptotically station-
ary. We summarize the above results in the following proposition.
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Proposition 10 1. Ify; is a doubly infinite process then

(a) CS implies UB implies CUB.
(b) CUB does not imply UB does not imply CS.

2. If y; 1s an initialized process then

(a) ACS implies UB implies CUB.
(b) CUB does not imply UB does not imply ACS.

10.2 Proof of Proposition 1

Any solution of (1) can be written in the form (6). Considering first the

regular case, we can factor A as A = Q %1 C(L) Q~!, where the columns
2
of () are the eigenvectors of a; and ay respectively. It can be verified that

ay Qas

Q = < 1 1 > and Q7' = (a; — ap)™! < _11 _an > Letting Q™' =

AR » y
( eI ) and defining ( - ) =Q! ( b ), (6) can be rewritten

Tt+1 Yt

py1 \ _ (a0 Dt —qpt g\
( Tt+1 ) B ( 0 a ) ( Tt ) + ( —g2p! vy + ¢! Et+1-

It follows that

as

Epir = aipe — ¢ 87 v and Eypyysi1 = a1 Eypyys for s =1,2,3, ...

21 p—1
Eiryyy = agry —q~ B v and Eyry g0 = agEyry s for s =1,2,3,.. ..

Since |az| > 1 and Ejryys = a3 ' Eyrey1 we have lim,_oo | Eireqs| = 0o unless
re = ay 'q*' 7 vy, It follows that a nonexplosive solution must satisfy y; =
—(¢*2/¢*)yr—1 + a3' B vy, Since —(¢*2/¢*) = a1 we have y; = aryi1 +
(Baz) tv;. There is a unique such solution that meets the initial condition
and a unique such stationary solution. Therefore (ii) follows.

In the case |a1], |as| > 1, suppose first that the roots are real. Then we
still have |az| > 1 so that imposing the associated nonexplosiveness condition
implies y; = a1y;_1+(1—Ba;) *v;. However |a;| > 1 implies that this solution
is also explosive, and hence there are no nonexplosive solutions, almost surely.
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Suppose instead that the roots are nonreal and given by r(cosw =i sinw) with
associated eigenvectors m =+ in. We can factor A as A = WrR,W !, where
R, = ( cosw W ) and W = ( n m ) Write

sinw cosw
11 9—1 11
1 Yt+1 _ -1 Yt w3 w
w ( " > =rR,W ( Ve ) + < w2 >’Ut+ ( w?! >€t+17

where w" are the components of W~!. Setting < itH ) =Ww-! < y?tjl )
t+1 t

11 9—1
Pt+1 bt —w
E = rR, + _ (.
(8) = () (S )
E, < Ptin > _ Tn—1RZ—1Et < Pi+1 ) '
Stin St+1

Since by assumption r > 1, a solution is explosive unless E; < Pe+1 ) =0,

St+1
-1
( yiﬁ ) =Wr'R}! < ngl >vt.

This implies that y; = kv; for some k. But then E;y; 1 = 0 and y; = dy;_1+v;.
Since § # 0 we have arrived at a contradiction, almost surely, and (i) is
established.

In the irregular case |ai|,|az| < 1, all solutions of the form (5) are non-
explosive. For €, a stationary stochastic process the solution

Y1 = (1= B7'L = B7I6LY) ™ (=B v + €141)

is stationary. If an initial condition yy = o is given then all solutions of
the form (5) for ¢ = 1,2,3,..., are nonexplosive, where y; is arbitrary.
Letting x111 = (Y141, y:) we can rewrite (5) as x4 = Axp — By 4 €444
and hence z;,1 = Alx; + Z;;B AV (=B v + ery1-4), where 21 = (y1,30)"-
Consider another solution generated by the same martingale difference se-
quence €;y1 but with initial condition z} = (¥}, %) with ¢} # y;. Then
|xf6 11 — @] = |AYz} — 21)] — 0. Hence every solution is indeterminate
and (iii) is established.

we have

i.e.
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10.3 Proof of Corollary 2

Determining the subset of the (3,8) plane which corresponds to indetermi-
nacy is simplified by considering separate cases.
Case 1: Real Eigenvalues (56 < 1/4). In this case, the eigenvalue of largest

size is as. Subcases are required.
Subcase 1: 3 > 0. Then

lasl <1 &
V1-436<28-1 &

1
ﬁ>§ and o6>1-7.

Subcase 2: 3 < 0. Then

lasl <1 &

V1—-4p86< -20-1 &
ﬁ<—% and o< —1—-20.

Case 2: Complex Eigenvalues (66 > 1/4). In this case the eigenvalues have
the same modulus. We have

lasl <1 &
1\? B—1\°
() < (55) < =
{>0 and 6 <} or {#<0 and 6>}

10.4 E-stability Conditions for CF Solutions
10.4.1 Proof of Proposition 7

The main text shows that in the differential equation for (a, b) the fixed point
(a2, 0) is locally unstable and hence that Sy;2 and Scr o are E-unstable. The
main text also shows that (aq,0) is locally stable. We now obtain the addi-
tional E-stability conditions for Sy;; and Scpi. The differential equations
in (a,b, c) have a recursive structure since a and b are independent of ¢. The
equation in ¢ thus gives the additional stability condition G(1 + a;) < 1,
which is equivalent to 26 — 1 < /T — 438. Clearly this is satisfied for § < 3
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and for § > % it is satisfied if (28 — 1)? < 1 — 436, which is equivalent to
G+ 6 < 1. The differential equations in (a, b, k, ) also have a recursive struc-
ture and since a; < 1 it is easily verified that (k,1) — ((1—Ba;)~",0). This
leaves the additional conditions required for convergence of the component
d. Again the system (a,b,d) is recursive with a,b independent of d. For
the MSV solution Sj1, because a — ai, the additional E-stability condi-
tion is given by ((a; + A) < 1. For the CF solution Scr; we have A = ay
and B(a; + A\) = 1. For this case the differential equation for d is given by
d/dr(d(T)) = (B(a+ A) —1)d(7). Using an argument analogous to (Evans
and Honkapohja 1992), p. 6, it can be shown that a(7) — a; implies that
d(7) converges to a finite value, and no additional stability conditions are
required.

10.4.2 Discussion of E-stability conditions for Sy

We discuss briefly the condition F(a; +A) < 1 required for E-stability of the
MSV solution Sys;. Because 5(1 + a;) < 1 is also required for E-stability,
and because A < 1, the condition (a; + A) < 1 is satisfied whenever 3 > 0.
In the case 8 < 0 we need 28\ — 1 < /1T — 436. It can be shown that this
always holds if § > —% or if 8+ 6 > —1. In the remaining region, namely
0 < —% and §+ 6 < —1, E-stability requires that \ > as.

10.4.3 E-stability conditions under alternative information assump-
tion

For the T-map given in Section 7, E-stability of a CF solution set requires
that DT, = % < 1 and DT, = % < 1. Tt can be verified that
DT,(a1) < 1 is always satisfied and that DT,(a2) < 1 if and only if 56 < 0.
For DT, it can be shown that DT.(a;) < 1 if and only if g < % or f+6<1
and that DT.(as) < 1if and only if either 3 > 3 or (0 < 3 < 3 and 8+6 < 1)
or (8 <0and f+6>1). Within the irregular regions these conditions lead
to the subregions of E-stability given in the text. Note that the differential
equation for d is given by d/dr(d(7)) = ((1— Ba)™'BA—1)d(r). Again
the coefficient (1 — Ba) 'BA\ — 1 = 0 at the CF solution a = a;, A = aj,
corresponding to the continuum in d. Since the system (a, b, d) is recursive
with a, b independent of d it again follows that a(7) — a; implies that d(7)
converges to a finite value.
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